
Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.1

CHAPTER 7:

STRUCTURED DATA OBJECTS

“Simplicity of life, even the barest, is not a misery,
but the very foundation of refinement”

William Morris (1834–96)

Introduction

n this chapter, we construct our first new data type. We say construct because we are
actually developing a new data type which can be manipulated in the same fashion as can
any of our basic data types (e.g., char, int, float). We can associate variable names, or

locations in RAM with them. We can construct arrays of structs, just as we can construct
arrays of data type char, or arrays of data type int, or arrays of data type float. We can use
our sizeof operator to determine how many bytes of storage we will require. In short, we
can consider them as we would any basic data type, except that they may be of variable
length.

Students often have trouble with this concept:

How can a structure which we create be considered a data type? After all,
aren’t data types set in stone by some higher authority, say, Bill Gates?

No, Virginia, they are not. We can construct our own data types, and they can be just as
valid as any of the data types we have discussed to date.

I

 ��								

��������������������������������								

C
H

 1

 How do nos. & chars differ?
 How do we convert into
binary?

 What are Octal and Hex?
Why?

����������������������������What is an Integer on the
PC?

 What if I need large
integers?

������������������������What is One’s Complement?

What is Two’s Complement ?

How are real numbers stored?
How are real nos. described?
What if I need large nos?
Data types are there in C?
Are there other data types?
What questions should I know?

C
H

 2

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.2

Structured Data Types (Structs)

ecall our definition of an array: an array is a fixed number of contiguous storage
elements all of the same data type. We are about to loosen one of these restrictions,
namely that the elements be all of the same data type.

This is a fairly common data structure. We are quite used to the concept of records in a
database, given that information about each of us is available in any number of databases.
Think about the type of information that is kept on us, however. The registrar at a
university might maintain some of the following information:

Table 7.1.

Quite a few. Exactly how many different types must be maintained is a subject of debate,
and we have a lot of options. For example, should SSN and Zipcodes be stored as
characters or numbers? Consider the possibilities given in Table 7.2.

There is no best combination. All of the questions asked above really should be answered
first. However, let’s assume that we agree on the amount of storage necessary for each of
the elements as shown in Table 7.3.

Remember, in C, a string requires one additional byte for the NULL character.

We require a total of 128 bytes (10 + 31 + 41 + 26 + 3 + 6 + 1 + 4 + 2 + 4 = 128) of
contiguous storage for each record. Once again, notice the emphasis on contiguous.
Assume that we wished to retain the following information as shown in Table 7.4

R

 Smith, Joe 123 Main St. Miam
i

FL 33134 3.267 66 2,028.28 3
Name Street City State Zip Class GPA Credit Hrs Balance SSN

123-45-6789

?���� What different data types are represented ???

?���� Which is the best combination? How much storage do we really need?

?����
Wait!! In the previous table, we noted that we only need 2 bytes for the field

state, for example. Why are we allocating 3 bytes ???

?���� How many total bytes do we need for our structured data object???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.3

Table 7.2

Data Item Data type/variable Example Comments

SSN
(Social Security No.)

char ssn[11];
char ssn[9];
long ssn;
unsigned long ssn;

“123-45-6789”
“123456789”
123456789
123456789

If we include hyphens
Without hyphens
Max Val: 2,147,483,647
Max Val: 4,294,967,295

Name char name[???];
char lastname[??],
 firstname[??];

“Smith, Joe”
“Smith”
“Joe”

How long is a name?
Should we break up
name?
How long should each be?

Street char street[???];
char apt[???],
 street[???];
char street1[???],
 street2[???];

“123 Main St.”
“Apt. 5A”
“123 Main St.”
“Mesa Village”
“123 Main St.”

How Many Characters?
Should we have this?
How Many Characters?
Should there be two lines?
How Many Characters?

City char city[???]; “Miami” How many Characters?

State char state[2]; “FL” This one is easy

Zipcode char zip[5];
char zip[9];
char zip[10];
unsigned long zip;

“33134”
“331340012”
“33134-0012”
331340012

Regular Zipcode
Extended Zipcode
Extended Zip with hyphen
Max Value:
4,294,967,295

Class int class;
char class;
unsigned char
class;
char class[???];

3
‘3’ or ‘A’
‘3’ or ‘A’
“4G”

3 = Junior
Max Classes: 128
Max Classes: 256
How many classes ??

Grade Point Average float gpa; 3.267 This is pretty easy

Credit Hours int hrs; 66 This is also pretty easy

Balance Owed float balance; 2028.28 This is also pretty easy

Table 7.3.

Field SSN name street city state zip class gpa hrs Balanc
e

Datatype char[10] char[31] char[41] char[26] char[3] char[6] char float int float

Bytes 10 31 41 26 3 6 1 4 2 4

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.4

Table 7.4.

SSN name street city state Zip class gpa hrs balance
123456789 Clinton, H. 123 Main Dallas TX 12345 4 3.145 78 564.89

If we could look in RAM (assuming a base address of 5000) we might see:

Table 7.5

Or, on a more primitive level, as shown in Table 7.6.

Once again, we need to examine the agreed-upon allotment as given in Table 7.3. Let’s
look at the fields and how many bytes each field requires, as specified in Table 7.7.

5000
‘1’

5001
‘2’

5002
‘3’

5003
‘4’

5004
‘5’

5005
‘6’

5006
‘7’

5007
‘9’

5009
‘\0’

5010
‘C’

5011
‘l’

5012
‘i’

5013
‘n’

5014
‘t’

5015
‘o’

5016
‘n’

5017
‘,’

5018
‘ ’

5019
‘H’

5020
‘.’

5021
‘\0’

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041
‘1’

5042
‘2’

5043
‘3’

5044
‘ ’

5045
‘M’

5046
‘a’

5047
‘i’

5048
‘n’

5049
‘\0’

5050

5051

5052

5053

5054

5055

5056

5057

5058

5059

5060

5061

5062

5063

5064

5065

5066

5067

5068

5069

5070

5071

5072

5073

5074

5075

5076

5077

5078

5079

5080

5081

5082
‘D’

5083
‘a’

5084
‘l’

5085
‘l’

5086
‘a’

5087
‘s’

5088
‘\0’

5089

5090

5091

5092

5093

5094

5095

5096

5097

5098

5099

5100

5101

5102

5103

5104

5105

5106

5107

5108
‘T’

5109
‘X’

5110
‘\0’

5111
‘l’

5112
‘2’

5113
‘3’

5114
‘4’

5115
‘5’

5116
‘\0’

5117
‘4’

5120
145

5121

5119
3.

5118

5122
7

5123
8

5126
89

5127

5125
564.

5124

?���� How do we determine where each of the fields are???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.5

Table 7.6.

Table 7.7.

Field Data Type Bytes Starting Address Ending Address
Ssn char[10] 10 5000 5009
name char[31] 31 5010 5040
street char[41] 41 5041 5081
city char[26] 26 5082 5107
state char[3] 3 5108 5110
zip char[6] 6 5111 5116
class char 1 5117 5117
gpa float 4 5118 5121
hrs int 2 5122 5123
balance float 4 5124 5127

00110001 00110010 00110011 00110100 00110101 00110110 00110111 00111000 00111001 00000000 01000011
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010

01101100 01101001 01101110 01110100 01101111 01101110 00101100 00100000 01001000 00101110 00000000
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021

01100000 00010010 10011100 00000000 00111110 10110011 10110010 00000000 00000000 11001110 00100110
5022 5023 5024 5025 5026 5027 5028 5029 5029 5030 5031

01011111 00111110

01011000

00000111 01111110 00000100 10111001 01100101 00000000 00110001 00110010
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042

00110011 00100000 01001101 01100001 01101001 01101110 00100000 01010011 00110100 00011000 00000000
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053

01110100 10111001 00000011 00110110 01100010 10011111 00000000 01011001 00000011 01110011 00011100
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064

00110001 00001110 00000000 11111010 00111101 00110011 00001111 11110010 00011110 10101101 01110011
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075

00000000 01110011 00000110 00000000 00111100 01010100 01000100 01100001 01101100 01101100 01100001
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086

01110011 00000000 01100011 00000111 01111100 11000001 01100000 00000010 00101010 01110100 01010011
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097

01110100 00011100 00000000 01010011 00000000 10011111 00000011 10011111 01010011 01110100 01010100
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108

01011000 00000000 00110001 00110010 00110011 00110100 00110101 00000000 00110100 01000001 00110001
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119

00000000 00010001 00000000 01001110 01000011 00000000 00000000 01101100
5120 5121 5122 5123 5124 5125 5126 5127

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.6

That is one of the problems associated with allocating fixed storage spaces for fields in
records. Generally speaking, this is not a major problem when storing numeric values. An
integer, for example, will require only 2-bytes of storage, regardless of magnitude (unless
of course, some integers are outside the range for 2-bit integers, in which case we need to
redefine the field as a long). The same is true for floats.

Character strings are more problematic. How many characters do we really need to
adequately store a street name, for example? Some street addresses may require very little
storage (e.g., 5 B St.) while others may require considerably more (e.g., 12367-89A
Northwest Mount Saint Helena Boulevard). The problem is further compounded when we
consider large databases (e.g., 100 million records), and by the fact that records require
contiguous storage. If a record becomes too large (e.g., requiring thousands of bytes of
contiguous storage for each record), we may run out of space (even though non-contiguous
storage may be available). These are not issues that we will deal with here, but they are
topics of concern for database designers.

Because we are storing SSN as a character array, we should allocate an extra byte for the
null character. As we have seen it makes string manipulation much easier. Of course we
don’t have to, but if we don’t, we have to keep track of the length of each of the strings.

We could, but once again, there are trade-offs. Firstly, we would have to save it as a long
data-type on 4-bytes (a savings of 6-bytes per record) since the longest possible SSN (999-
99-9999) requires 9 decimals (the largest number which even an unsigned integer could
represent is 65535 (4-decimals); the largest (signed) long number is 2147483647, meaning
we could represent all 9-digits. However, what would happen, for example, if someone had
the social security number 000-00-100? The numeric value 100 would be stored, and in
order to print it out, we would have to do some fancy manipulation (i.e., the leading zeros
would have to be added back before printing). Once again, this is an issue for the database
designer.

As with other variables, when we declare a record in the c programming language we are
requesting that a fixed number of contiguous bytes be reserved in RAM and at what base
address they can be found. We also indicating how the bits are to be manipulated by

?����
Why are there so many unused/’garbage’ bytes (of the 128-bytes in the record

above, 71 (or 55%) are unused) ???

?����
Why are we allocating 10-bytes for SSN, when a social security number only

consists of 9 digits ???

?���� To save space, why don’t we save SSN as a numeric data type ???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.7

specifying the component data types found in our structured data object. Consider the
instructions given in C/C++ code 7.1.:

The c code above is actually the structure template. Essentially, we are defining a new data
type, which we have called struct student.

It is a collection of basic data types, BUT it is also a new and distinct data type. It follows
all of the rules we applied to our other data types. It has a set size (128-bytes). It requires
contiguous bytes of storage.

As with other data types, we MUST associate it with a variable in order to use it.

Using Structured Data Types

ust like all other basic data types, in order to access the data stored in at a location, we
must associate a variable name with it. It does not make sense to merely issue the

commands:

J

struct student
{ char ssn[10];
 char name[31];
 char street[41];
 char city[26];
 char state[3];
 char zip[6];
 char class;
 float gpa;
 int hrs;
 float balance;
}

 C/C++ Code 7.1

?����
How can this be a new data type??? It is nothing more than a collection of basic

data types.

int main()
{ int;
 float;
 char;
 º
 º

C/C++ Code 7.2

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.8

We just as we did, for example, when we made the statements: int i; char myarray[10];
float fnumber; With these declarations, we associated a variable name, or location in RAM
with the type of data which was stored there. We must do the same with our new data type,
struct student.

In this case, we have associated our data type struct student with the variable name
(location RAM) studentrecord. If we found out that the address studentrecord was 5000,
and we go to that location, we expect to interpret the data we find there according to the
data type struct student. On the first 10-bytes (5000-5009) we will find 10 characters
(numeric data of type char), on the next 31-bytes (5010-5040), we will also find 31
characters, and so forth. For each component, we know how to interpret the bit patterns we
find.

The only difference is that we must define our structure template BEFORE the main
function.

All of the basic data type are built-in to the C/C++ programming language (they are, in
fact, reserved words). How we are to interpret them is known in advance. Because we are
creating a new data type, we must let the compiler know how to interpret the data in
advance, so that the data will be stored as we wish it to be. We also must let the compiler
know this information in advance so that it can check for correct usage before creating the
compiled program.

For some reason, students initially find this notation confusing. Perhaps it is because the
data type struct student requires 2 words to represent (although, so does the data type long

struct student
{ char ssn[10];
 char name[31];
 char street[41];
 char city[26];
 char state[3];
 char zip[6];
 char class;
 float gpa;
 int hrs;
 float balance;
}
int main()
(struct student studentrecord;

 C/C++ Code 7.3

?���� Why ??? We do not need to specify basic data types in advance !!!

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.9

double). It does follow all of the syntactical rules associated with basic data types.
Consider the following comparison:

 Data Type

 int aninteger; struct student studentrecord;

 Variable Name

C/C++ does allow for one additional notation which might (perhaps) make the use of
structs a little easier:

Which allows us to combine the definition of the structure template and the variable
declaration.

As with any of the other data types, we can also initialize the contents of the structure (in
our case, at location studentrecord) at the same time we make the variable declaration.
Since we have two different ways of introducing a structure, we also have two different
ways of initialializing (C/C++ code 7.5 and 7.6):

struct student
{ char ssn[10];
 char name[31];
 char street[41];
 char city[26];
 char state[3];
 char zip[6];
 char class;
 float gpa;
 int hrs;
 float balance; } studentrecord;

 C/C++ Code 7.4.

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.10

No. A struct is a data type, just like all of the other basic data types. As with the other data
types, we can use them as building blocks to construct additional structures, for example,
arrays.

Arrays of Structured Data Types

n array of structs is basically no different than an array of characters, integers, or real
numbers. As with these types of arrays, the main advantage is that we can readily

calculate the address of any element in the array quickly (although we need one additional
step to calculate the address of any field within the record. The main disadvantage, as with
all arrays, is that we require contiguous bytes of storage.

Consider the code given in 7.6.:

A

struct student
{ char ssn[10], name[31], street[41], city[26], state[3], zip[6], class;
 float gpa;
 int hrs;
 float balance; }
int main()
(struct student studentrecord = {“123456789”,”Smith, Mary”,”123 Main Street”
 “New York”,”NY”,”10001”,’A’,
 2.78, 98, 1234.50};

 C/C++ Code 7.5

struct student
{ char ssn[10], name[31], street[41], city[26], state[3], zip[6], class;
 float gpa;
 int hrs;
 float balance; } studentrecord = {“123456789”,”Smith, Mary”,
 ”123 Main Street”, “New York”,”NY”,”10001”,’A’,
 2.78, 98, 1234.50};

 C/C++ Code 7.6.

?���� Does that mean that we can only use scalar variables with structs???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.11

We have established an array of records or, in relational data base terms, a table. We have
also requested a total of 100 * 128 = 12,800 bytes of RAM starting at location class. Each
record in the table will require 128 bytes of storage. Assuming we set values into the table,
it might appear as:

Table 7.8.

Rec ssn name street city state zip Class gpa hrs balance

0 123456789 Clinton, H. 123 Main Dallas TX 12345 4 3.145 78 4762.89

1 987654321 Marino, D 4523 Ocean Miami FL 33100 3 2.206 65 0.00

2 234567890 Tolstoy, L. 750 Basil St. Moscow ID 66066 3 4.000 120 9878.99

3 876543210 Jordan, M. 89 So.Shore Chicago IL 11111 2 2.512 45 -8900.00

• • • • • • • • • • • • • • • • • • • • •

96 345678901 Bach, J. 13 Melody Los Angeles CA 79901 4 3.889 112 7685.89

97 765432109 Dali, S. 45 Surreal New York NY 10221 1 1.457 36 750.67

98 456789012 Turner, T. 2 Peachtreee Atlanta GA 43012 4 2.001 89 0.00

99 654321098 Gump,. F. 6 Fantasy Birmingham AL 23456 2 3.876 82 -500.00

 #include <stdio.h>
 #define CLASSSIZE 100 // Assume this is the maximum number of students
 struct student // The student template
 { char ssn[10];
 char name[31];
 char street[41];
 char city [26];
 char state[3];
 char zip[6];
 char class;
 float gpa;
 int hrs;
 float balance; }; // for a total of 128-bytes

 int main()
 struct student class[CLASSSIZE]; // an array of 100 students

 C/C++ Code 7.6.

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.12

Because each record contains the same number of bytes, we can readily determine the base
address of each record, and, since we know how many bytes of storage each field in the
record requires, we can likewise determine the base address of each field in the record.
Again, assuming the base address of our data type struct student at location class is 5000,
the associated base addresses for each field would be:

Table 7.9.

Rec ssn name street city state zip class gpa hrs Balance

0 5000 5010 5041 5082 5108 5111 5117 5118 5122 5124

1 5128 5138 5169 5210 5236 5239 5245 5246 5250 5252

2 5256 5266 5297 5338 5364 5367 5373 5374 5378 5380

3 5384 5394 5425 5466 5492 5495 5501 5502 5506 5508

• • • • • • • • • • • • • • • • • • • •

96 17288 17298 17329 17370 17396 17399 17405 17406 17410 17412

97 17416 17426 17457 17498 17524 17527 17533 17534 17538 17540

98 17544 17554 17785 17826 17852 17855 17861 17862 17866 17868

99 17672 17682 17713 17754 17780 17783 17789 17790 17794 17796

Which makes sense since we know that the array of structures takes up 12,800 bytes,
meaning that it takes up locations 5,000 + (12,800 – 1) = 17,799 (notice that the field
balance, in the last record, starts at location 17,796 and is of type float, meaning it takes up
locations 17,796 through 17,799).

Calculating the base address of any record is (almost) as easy as calculating the address of
any element in an array since we are dealing with an array (a ‘superarray’, if you will). The
only difference is that since we are mixing the data types used in the record, we need to
multiply our offset (here listed as record number, but in fact, since we are dealing with an
array, the offset from the base address of the array) by the number of bytes required for
each record (e.g., the base address of record 97 would be 5000 + 97 * 128 = 5000 + 12416
= 17416). Once we have determined the base address of any record, we can readily
determine the base address of any field within that record, as we did previously.

The general formula applied, to calculate the base address of any field, is:

 base address
 + offset * number of bytes per record
 + number bytes preceding the field

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.13

The c programming language provides us with some convenient notation to access records
and fields within a record. For example, if we wished to find the zipcode for record (offset)
2 (actually the third record), we would use the notation:

class[2].zip

Once again, since class is an array of type struct student we can use an index (offset) to
determine the base address of the record (5000 + 2 * 128 = 5256). Using the dot operator
(.) after the record allows us to determine the base address of the individual field, based on
the specifications we established in the structure template (e.g., the field zip can be found
10 + 31 + 41 + 26 + 3 = 111 bytes from the base address for the record, or in our example,
at address 5256 + 111 = 5367).

Because zip is a character array, we could also have used the notation: class[2].zip[1]

In this case we would be pointing to the address 5367 + 1 = 5368, which contains the
character ‘2’ (or more precisely, the numeric value 50).

Let’s take a look at how we might actually use a struct. In the following example (C code
7.7.), we will create a (simple) table which will hold three records, each with the fields
account_no (an integer), name (a character array of length 15), and balance (a float). To
demonstrate different methods for entering data into the struct, we will initialize the first
two records when we declare, and input the third from the keyboard. Once we have all the
data, we will search the struct for balances which exceed $200, and print out the
information we find.

For this program, for each record (struct) we need :

struct account
 { int account_no; 2-bytes
 char name[15]; 15-bytes
 float balance; }; 4-bytes

 21-bytes per record

And since we are declaring an array of three records (struct account customer[3]) at
location customer, we are requesting a total of 3 * 21 = 63 contiguous bytes of storage. If
the base address of customer were 7500, the addresses associated with each field would be:

Table 7.10.
Record/Offset Acccount_no name balance

0 7500 7502 7517
1 7521 7523 7538
2 7542 7544 7559

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.14

Again, Assuming a base address of 7500, the relevant portion of RAM might appear as:

 #include <stdio.h> // For input/output functions
 #include <stdlib.h> // for atoi and atof

 struct account // the structure template
 { int account_no; // customer account number
 char name[15]; // customer name
 float balance; }; // customer balance

 int main()
 { struct account customer[3] = // our array of records, the first 2 here
 {{2340, "Jones, Mary", 432.23}{1234, “Smith, John”, 25.00}};
 int index; // the array index/offset
 char entry[20]; // a temporary string

 /* get the third record from the keyboard */
 printf("Enter customer id: "); // Prompt for ID
 gets(entry); // assume we enter '2010'
 customer[2].account_no = atoi(entry); // convert to integer
 printf("Enter customer name: "); // Prompt for Name
 gets(customer[1].name); // assume we enter "Rodriguez, J"
 printf("Enter Balance: "); // Prompt for balance
 gets(entry); // assume we enter "245.34"
 customer[1].balance = atof(entry); // convert to float

 for (index = 0; index < 3; index++) // Now search the array
 if (customer[index].balance > 200) // and print if balance > 200
 printf("Name: %16s Account: %7d Balance: %10.2f\n",
 customer[index].name, customer[index].account_no,
 customer[index].balance);

 /* The above print statement will produce the output:

 Name: Rodriguez, J. Account: 2010 Balance: 245.34 */

 }

 C/C++ Code 7.3.

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.15

Table 7.11.

7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513

23 40 ‘J’ ‘o’ ‘n’ ‘e’ ‘s’ ‘,’ ‘ ‘ ‘M’ ‘a’ ‘r’ ‘y’ ‘\0’
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527

--- --- --- 432.23 1234 ‘S’ ‘m’ ‘i’ ‘t’ ‘h’
7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541

‘,’ ‘ ‘ ‘J’ ‘o’ ‘h’ ‘n’ ‘\0’ --- --- --- 25.00
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555

201 0 ‘R’ ‘o’ ‘d’ ‘r’ ‘i’ ‘g’ ‘u’ ‘e’ ‘z’ ‘,’ ‘ ‘ ‘J’
7556 7557 7558 7559 7560 7561 7562

‘\0’ --- --- 245.34

Or, once again, on a more primitive level:

Table 7.12.

7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
0000100

1
0010010

0
0100101

0
0110111

1
0110111

0
0110010

1
0111001

1
0010110

0
0010000

0
0100110

1
0110000

1
0111001

0
0111100

1
0000000

0

7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
0110111

1
0010000

0
0010010

0
0011110

1
1101011

1
1010100

0
1101011

1
0000010

0
1101001

0
0101001

1
0110110

1
0110100

1
0111010

0
0110100

0

7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
0010110

0
0010000

0
0100101

0
0110111

1
0110100

0
0110111

0
0000000

0
0110010

1
0110111

1
0111101

0
0110010

1
0111001

1
0111001
0

0111100
1

7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555
0000011

1
1101101
0

0101001
0

0110111
1

0110010
0

0111001
0

0110100
1

0110011
1

0111010
1

0110010
1

1111010 0010110
0

0010000
0

0100101
0

7556 7557 7558 7559 7560 7561 7562
0000000

0
0110111

1
0000010

0
0011110

1
1101011

1
0110010

1
0110010

1

Pointers and Structured Data Types

s with other data types and structures, we can access elements in a struct through the
use of pointers. As we shall see in later chapters, associating a pointer with a
structured data object is not only useful, it is necessary. Without pointers, we would

not be able to construct any of the data structures we will discuss in the following sections.

As with pointers to basic data types, we need to know only a few details:

1. The base address of the data type
2. The type of data which we would find at that location.

Consider the table we established using C Code 7.7. The structured data object we created
was:

A

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.16

struct account
 { int account_no; 2-bytes
 char name[15]; 15-bytes
 float balance; }; 4-bytes

 21-bytes per record

and we associated the data type struct account with the location customer, which was an
array of 3 elements. The code applied constructed the table:
 Table 7.13.

Offset account_no name balance
0 2340 Jones, Mary 432.23
1 1234 Smith, John 25.00
2 2019 Rodriguez, J. 245.34

We know that if we wished to print the table, we would apply the code:

In function main, we could have added the pointer: struct account *cust; This declaration
request 4-bytes of contiguous storage at location cust. Further, it tells us that if we go to
location cust, we will find the data type struct account, on 21-contiguous bytes, laid out
such that:
 The first 2-bytes will contain a (signed) integer
 The next 15-bytes will contain a string
 The remaining 4-bytes will contain a string

We could therefore print out the table using the alternative code:

for (index = 0; index < 3; index++)
 printf("Name: %16s Account: %7d Balance: %10.2f\n",
 customer[index].name, customer[index].account_no, customer[index].balance);

 C/C++ Code 7.8.

cust = customer;
while (cust <= &customer[2])
{ printf("Name: %16s Account: %7d Balance: %10.2f\n",
 cust ->name, cust->account_no, cust->balance);
 cust++;
}

 C Code 7.9.

?���� How does this work???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.17

Let’s consider the program line-by-line. We already know how the data table will be stored
(see Tables 7.11. and 7.12.). When we make the declaration:

struct account *cust;

we are asking for 4-bytes of RAM at location cust. Let’s assume that cust will be assigned
location 7572. Given the base address of 7500 for our array of struct account customer,
after the command:

cust = customer;
Table 7.14.

7572 7573 7574 7575

 75 00

The address 7500 will be stored at location cust (address 7572). Our conditional check:

while (cust <= &customer[2])

Checks to see if the address stored at location cust is less than or equal to:

7500 + 2 * 21 = 7500 + 42 = 7542

Which is the base address of our third (customer[2]) record. Since it is (in this case), we
will print out the data requested:

printf("Name: %16s Account: %7d Balance: %10.2f\n", cust ->name, cust->account_no,
cust->balance);

There is only one notation in this expression which might need some explanation. The symbol
-> used, for example in the statement cust->name, is actually a redirect operator (which we
have seen previously). It instructs the program to go to the address stored at location cust (in
this case, 7500) and to print out the contents of field name as a string on field of 16 places.

The next statement: cust++;

Increments the contents of location cust by 21 such that location cust would appear as:

Table 7.15.
7572 7573 7574 7575

 75 21

Which is the base address of our second record, customer[1].

Because our data type struct account contains 21-bytes. It is no different that incre-
menting a pointer to data type int by 2, or a pointer to data type float by 4. We have created
a new data type which just happens to contain 21-bytes. If we were to issue the command:

?���� Why are the contents of location cust incremented by 21-bytes???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.18

printf(“The data type struct account contains %d bytes\n”, (sizeof) customer[1]);

We would see the output:

The data type struct account contains 21 bytes

The next time we increment the contents of location cust (cust++;) it will become 7542,
which is the base address of customer[2], and we will print out the requested information.
After that, the contents of location cust will be incremented by 21-bytes, meaning that it
will contain the address 7563. In this case, when we make our conditional check (while
(cust <= &customer[2]), where &customer[2] is 7542), the result will be false, and we stop
printing.

Basically, that is true. Let’s take a more relevant usage of pointers. Consider the following
table:

Table 7.16.

Offset

employee_name

SSN

title

department

depart_
rm

department_
head

0 Christie, Agatha 012-34-5678 Copy Editor Management 319 Dostoyevsky
1 Hesse, Herman 123-45-6789 Programmer Info. Systems 205 Shakespeare
2 Eliot, T.S. 234-56-7890 Accountant Accounting 456 Goethe
3 Carroll, Lewis 345-67-8901 Systems Analyst Info. Systems 205 Shakespeare
4 Beckett, Samuel 456-78-9012 Coordinator Management 319 Dostoyevsky

This table violates even the most simplistic rules: It is NOT in 1st normal form (i.e., it has
repeating groups). All the information about an employee’s department is repetitious: the
fields department, depart_location, and department_head, are best placed in a separate
table and a foreign key placed in the employee’s table.

We would be better off with the following two tables:

Table 7.17.

Offset employee_name SSN title department

0 Christie, Agatha 012-34-5678 Copy Editor 7800
1 Hesse, Herman 123-45-6789 Programmer 7765
2 Eliot, T.S. 234-56-7890 Accountant 7730
3 Carroll, Lewis 345-67-8901 Analyst 7765
4 Beckett, Samuel 456-78-9012 Coordinator 7800

?���� This doesn’t seem like it is an improvement over using a for statement !!!

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.19

Where department contains the RAM address where we will find the following infor-
mation:

Table 7.18.

Offset depart_name depart_ rm depart_head Base address

0 Accounting 456 Goethe 7730
1 Info. Systems 205 Shakespeare 7765
2 Management 319 Dostoyevsky 7800

First of all, let’s look at our two structured objects (call them emp_record and
dept_record):

struct emp_record
{ char employee_name[18]; 18-bytes
 char ssn[10]; 10-bytes
 char title[12]; 12-bytes
 struct dept_record * department; }; 4-bytes

 44-bytes
struct dept_record
{ char dept_name[15]; 15-bytes
 int dept_room; 2-bytes
 char dept_head[18]; }; 18-bytes

 35-bytes

The major point to note is that in our structured object emp_record we include a pointer
field (department, of data type struct dept_record) which will contain an address which, if
we were to go to, we would find all of the information needed about the employee’s
department. In function main, we might make the declaration:

Let’ assume that 44 * 5 = 220 contiguous bytes for our array customer are assigned starting at
the base address 7500. Let’s also assume that 35 * 3 = 105 contiguous bytes for our array
department are assigned starting at the base address 7730. Notice that in this case, we have
initialized the arrays, merely reserved a total of 220 + 105 = 325 bytes of storage.

void main()
{ struct emp_record customer[5];
 struct dept_record department[3];

 C/C++ Code 7.10..

?���� How would this work???

?���� Can we initialize arrays of structured data objects when we declare them???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.20

Yes, in much the same manner as we did earlier. Consider the following C code, which would
set in the data values as given in tables 7.17. and 7.18 (except for the pointer field in data
structure struct emp_record):

Table 7.19.
7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516

‘C’ ‘h’ ‘r’ ‘i’ ‘s’ ‘t’ ‘i’ ‘e’ ‘,’ ‘ ’ ‘A’ ‘g’ ‘a’ ‘t’ ‘h’ ‘a’ ‘\0’
7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533

--- ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘\0’ ‘C’ ‘o’ ‘p’ ‘y’ ‘ ’ ‘E’
7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550

‘d’ ‘i’ ‘t’ ‘o’ ‘r’ ‘/0’ ‘H’ ‘e’ ‘s’ ‘s’ ‘e’ ‘,’ ‘ ‘
7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567

‘H’ ‘e’ ‘r’ ‘m’ ‘a’ ‘n’ ‘\0’ --- --- --- --- ‘1’ ‘2’ ‘3’ ‘4‘ ‘5’ ‘6’
7

568
7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584

‘7’ ‘8’ ‘9’ ‘\0’ ‘P’ ‘r’ ‘o’ ‘g’ ‘r’ ‘a’ ‘m’ ‘m’ ‘e’ ‘r’ ‘\0’ ---
7585 7586 7587 • • • • • • • • • 7676 7677 7678 7679 7680

 • • • • • • • • • ‘B’ ‘e’ ‘c’ ‘k’ ‘e’
7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697

‘t’ ‘t’ ‘,’ ‘ ‘ ‘S’ ‘a’ ‘m’ ‘u’ ‘e’ ‘l’ ‘\0’ --- --- ‘4’ ‘5’ ‘6’ ‘7’
7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714

‘8’ ‘9’ ‘0’ ‘1’ ‘2’ ‘\0’ ‘C’ ‘o’ ‘o’ ‘d’ ‘i’ ‘n’ ‘a’ ‘t’ ‘o’ ‘r’ ‘\0’
7715 7716 7717 7718 7719

--- ‘9’ ‘0’ ‘1’ ‘2’

For our array department are (with a base address of 7730), RAM might appear as:

void main()
{ struct emp_record customer[5] =
 {{“Christie, Agatha”, “012345678”, “Copy Editor”,,},{“Hesse, Herman”, “123456789”,
 “Programmer”,,},{“Eliot, T.S.”,”234567890”,”Accountant”,,}, {“Carroll, Lewis”,
 “345678901”,”Analyst”,,},{“Beckett, Samuel”,”456789012”,”Coordinator”,,}};
 struct dept_record department[3]=
 {{“Accounting”, 456, “Goethe”},{“Info. Systems”, 205, “Shakespeare”},
 {“Management”, 319, “Dostoyevsky”}};

 C/C++ Code 7.11.

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.21

Table 7.20.

7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745

‘A’ ‘c’ ‘c’ ‘o’ ‘u’ ‘n’ ‘t’ ‘i’ ‘n’ ‘g’ ‘\0’ --- --- --- --- 4
7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761

56 ‘G’ ‘o’ ‘e’ ‘t’ ‘h’ ‘e’ ‘\0’ --- --- --- --- --- --- --- ---
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777

--- --- --- ‘I’ ‘n’ ‘f’ ‘o’ ‘.’ ‘ ‘ ‘S’ ‘y’ ‘s’ ‘t’ ‘e’ ‘m’ ‘s’
7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793

‘\0’ --- 205 ‘S’ ‘h’ ‘a’ ‘k’ ‘e’ ‘s’ ‘p’ ‘e’ ‘a’ ‘r’ ‘e‘ ‘\0’
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809

--- --- --- --- --- --- ‘M’ ‘a’ ‘n’ ‘a’ ‘g’ ‘e’ ‘m’ ‘e’ ‘n’ ‘t’
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825

‘0\’ --- --- --- --- 319 ‘D’ ‘o’ ‘s’ ‘t’ ‘o’ ‘y’ ‘e’ ‘v’ ‘s’
7826 7827 7828 7829 7830 7831 7832 7833 7834

‘k’ ‘y’ ‘\0’ --- --- --- --- --- ---

In terms of space required and readability, yes. When we tried to put all of the infor-
mation in the one table (Table 7.16) we needed a total of:

 char employee_name[18]; 18-bytes
 char ssn[10]; 10-bytes
 char title[12]; 12-bytes
 char dept_name[15]; 15-bytes
 int dept_room; 2-bytes
 char dept_head[18]; 18-bytes

 75-bytes per record

or 5 * 75 = 375 bytes of contiguous storage. When we used two tables, we needed a total of
220 + 105 or 325 bytes of storage, and two blocks of 220 and 105 contiguous bytes.
Further, this is a simplified example. Suppose we had 800 employees and a total of 10
departments. If we were to try and store all of the information in one table, we would
require a total of 800 * 75 = 60,000 contiguous bytes of storage. Using two tables, we
would require 800 * 44 = 35,200 contiguous bytes (for table employee), and 10 * 35 =
350 contiguous bytes (for table department), or a total of 35,550 bytes (59% of what we
need for one table).

Manipulation of the two tables is also relatively simple. If, for example, we wished to print
out the two tables (so that it would appear as it does in Table 7.16.) we could use the
following program:

?���� Is this a major improvement???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.22

Once again, the only notation which might appear initially confusing is the redirection
using pointers. Let’s follow the pointers and how they are manipulated in each pass:

Table 7.21.

i

employee[i].departmen

t

employee[i].departmen
t -> dept_name

employee[i].departmen
t -> dept_room

employee[i].departmen
t -> dept_chair

0 7800 Management 319 Dostoyevsky
1 7765 Info. Systems 205 Shakespeare
2 7330 Accounting 456 Goethe
3 7765 Info. Systems 205 Shakespeare
4 7800 Management 319 Dostoyevsky

 Yes, many. In the next section, after a brief discussion on searching and sorting (which
will in part also use pointers) we will see pointers in linked lists. In fact, from that point
onward, we will find that without the use of pointers, we could not possibly be able to
construct any abstract data types we will discuss.

void main()
{ struct emp_record customer[5];
 struct dept_record department[3]; // assume that we have already inputted all the data
 int i;
 for (i = 0; i < 5; i++)
 printf(“%18s %10s %12s %15s %5d %18s\n”, employee[i].employee_name,
 employee[i].ssn, employee[i].title, employee[i].department -> dept_name,
 employee[i].department -> dept_room, employee[i].department -> dept_chair);
}

 C/C++ Code 7.12.

?���� Are there any other uses of pointers in structured data objects???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.23

Summary

n chapters 4 and 5, both of which dealt with arrays, we were forced to operate under
some restrictions: the data structures all had a fixed number of contiguous storage

elements all of the same data type. In this chapter, we were able to remove the constraint
that the data object all be of the same data type.

Structured data objects (structs) are an extremely useful abstract data type. Without the
concepts advanced, there would be no such things as databases (at least not without
extreme measures applied to manipulate the data contained in each of the records). Further,
structs will be used in each of the following data types which we will examine in the rest
of the text. This is especially true for linked lists and hierarchical data types (trees).

This chapter also went into more details about the use of pointers. Combining pointers in a
structured data object results in a powerful combination. Placing pointers as a field in a
structured data object allows us to use dynamic memory allocation, which will later allow
us to construct a variety of tree.

Chapter Terminology: be able to fully describe these terms

& (before a variable name) field
* (before a variable name) pointer
-> pointer field
address offset redirection
arrays of structs sizeof operator
base address struct
calculation of field address structure template
calculation of record address structured data object
contiguous storage table
dot notation

I

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.24

Review Questions

1. What advantages do an array of data type struct have over a regular array?? Explain

2. It was stated that by declaring a structured data object, say struct newobject { …} we

are creating a new data type. Explain.

3. How many bytes of contiguous storage would be required for the array mydata given

the following structure template and declaration:

struct mystuff
 { char classification, title[13];
 int number1, number2, numbers[42];
 float fnumb1, fnumb2[7];
 double doub1[3];
 struct mystuff * mypointer; };
 int main()
 { struct mystuff mydata[12];

4. Given: struct datatemplate
 { char group[3];
 int groupclass;
 struct datatemplate *next; };
 char main()
 { struct datatemplate data[3] = { {“AB”,76,6741},{“X4”,322,6732},
 {“6T”,0,6750}};

 If we issue the statement: printf(“%lu”, data)
 And we receive the output: 6732

 A. Show how the data would be laid out in RAM (in Decimal or in Roman Characters)
 B What would be printed by the statement: printf(“%d”, (sizeof) data);
 C. What would be printed by the statement: printf(“%lu”, &data[1]);
 D. What would be printed by the statement: printf(“%lu”, &data[2].next);
 E. What would be printed by the statement: printf(“%d”, data[1].groupclass);
 F. What would be printed by the statement: printf(“%s”, data[2].group);
 G. What would be printed by the statement: printf(“%d”, data[0].next->groupclass);
 H. What would be printed by the statement: printf(“%d”, data[0].next->next->group);

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.25

Review Question Answers (NOTE: checking the answers before you have
tried to answer the questions doesn’t help you at all)

1. What advantages do an array of data type struct have over a regular array?? Explain

The main advantage is that the data elements in a structured data object (struct)
need not all be of the same data type.

2. It was stated that by declaring a structured data object, say struct newobject { …} we

are creating a new data type. Explain.

The basic adage Give me an address and tell me what type of data is stored there,
and I will tell you the value of that data type still applies. After we have determined
an address, say for struct newobject { …}, we are telling the compiler that if we go
to that address, we will be able to interpret the data found and how we will
interpret that data.

3. How many bytes of contiguous storage would be required for the array mydata given

the following structure template and declaration:

struct mystuff
 { char classification, title[13];
 int number1, number2, numbers[42];
 float fnumb1, fnumb2[7];
 double doub1[3];
 struct mystuff * mypointer; };
 int main()
 { struct mystuff mydata[12];

 Given: char classification, // 1-byte
 title[13]; // 13-bytes
 int number1, // 2-bytes
 number2, // 2-bytes
 numbers[42]; // 84-bytes
 float fnumb1, // 4-bytes
 fnumb2[7] // 28-bytes
 double doubl[3]; // 24-bytes
 struct mystuff *mypointer; // 4-bytes

 162-bytes

Then: mydata[12] => 12 * 162 = 1,944 contiguous bytes of storage

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.26

4. Given: struct datatemplate
 { char group[3];
 int groupclass;
 struct datatemplate *next; };
 char main()
 { struct datatemplate data[3] = { {“AB”,76,6741},{“X4”,322,6732},
 {“6T”,0,6750}};

 If we issue the statement: printf(“%lu”, data)
 And we receive the output: 6732

A. Show how the data would be laid out in RAM (in Decimal or in Roman Characters)

Each record requires: char group[3]; // 3-bytes
 int groupclass; // 2-bytes
 struct datatemplate *next; // 4-bytes

 9-bytes

If the base address of data is 6732, then each record and field has the address:

Offset Group groupclass Next
0 6732 6735 6737
1 6741 6744 6746
2 6750 6753 6755

If we were to go to that address, we would find the values:

Offset Group groupclass Next
0 “AB” 76 6741
1 “X4” 322 6732
2 “6T” 0 6750

Therefore, in RAM we would see:

6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745

‘A’ ‘B’ ‘\0’ 76 6741 ‘X’ ‘4’ ‘\0’ 322
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758

 67 32 ‘6’ ‘T’ ‘\0’ 0 6750

 B What would be printed by the statement: printf(“%d”, (sizeof) data);

Each record requires 9-bytes of storage. Since there are 3 records, (sizeof) data
would be 3 * 9 = 27-bytes.

 C. What would be printed by the statement: printf(“%lu”, &data[1]);

From the above table, we can see that &data[1] is 6741

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Structured Data Objects Page 7.27

 D. What would be printed by the statement: printf(“%lu”, &data[2].next);

From the above table, we can see that &data[2].next is 6750

 E. What would be printed by the statement: printf(“%d”, data[1].groupclass);

From the above table, we can see that data[1].groupclass is 322

 F. What would be printed by the statement: printf(“%s”, data[2].group);

From the above table, we can see that data[2].group is 6T

 G. What would be printed by the statement: printf(“%d”, data[0].next->groupclass);

From the above table, we know that data[0].next is 6741. At that base address, we
would find the second (offset 1) record. The contents of field groupclass for the
second record is 322.

 H. What would be printed by the statement: printf(“%d”, data[0].next->next->group);

From the above table, we know that data[0].next is 6741, which is record 2 (offset 1).
At that base address (record 2, or offset 1), we find that the value of next is 6732,
which is record 1 (offset 0). The value of group, for record 1, is “AB”.

