
Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

2 Chapter 1: Bits and Bytes

CHAPTER 1:

BITS AND BYTES

“Tall Oaks from little acorns grow”
David Everett (1769-1813)

Introduction

his chapter starts with the very basics: the machine level representation of how data is
stored in the computer. It is not possible to truly understand data structures without a

general understanding of basic data types (Chapter 2). Correspondingly, it is not possible to
truly understand basic data types without first understanding the components (bits and bytes)
which make up these basic data types. It’s basically that simple; in fact, it is that simple (no
adjectives needed). For an electronic engineer, the material covered in this chapter would be
considered profoundly rudimentary. It would be as necessary as memorization of
multiplication tables are to normal day functioning; we would not even be aware that we were
once forced to memorize them unless it were brought to our attention.

With this in mind, we undertake our discussion of bits and bytes. The material discussed is not
meant to qualify you to build your own computer, nor even to give you a complete under-
standing of how computers operate. The intent is to provide you with an overview of how
computers function and, basically, how they process data. At times, the chapter might be
oversimplified, and certain areas will be omitted. However, as noted above, failure to grasp
the concepts presented here probably means that you will experience similar results when it
comes to understanding data structures.

T

��								

��������������������������������								

C
H

 1

 What is a BIT?

 How Many BITs Do I need?

 How do I calculate my needs?

����������������������������BITs and computers? How?

 What is a BYTE ?

����������������������������Why is it called a BYTE ?

What is Parity ?

What are Abstract Data Types?

What is ASCII?

What is an ASCII file?

Do All Computers use ASCII?����

What is EBCDIC?

Any other questions?����

Chapter 1: Bits and Bytes 3

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

����������What is a BIT? �

Bits

he term bit is an acronym for the expression Binary Digit. By definition, it is “a single
digit in a binary numbering scheme”, meaning it can take on one of
two values: 0 and 1 (a binary condition). It is a mutually exclusive

state: Something either isn’t (‘0’), or it is (‘1’). It is also
the basic unit of information storage.

Well, nothing really, except that it provides with a convenient analogy for describing the way
in which a computer processes data. The computer has no idea what a 1 or a 0 is. It is, after all,
nothing more than an electronic device with voltage running through it. As with all devices
requiring electricity, such as a light bulb, we could describe them as either being on or off. In
other words, they exist in a binary state.

Binary schemes are perhaps the oldest coding systems known to man and the easiest to under-
stand. Take, for example, the code used by Paul Revere to signal how the British were
attacking: 1 lantern if by land, 2 lanterns if by sea (or, using more modern technology, light
bulbs). It was intended as a simple binary code since there were only two possible states.

T

 State 1: Off

State 2: On

By Land
By Sea

Figure 1.1.

Figure 1.2

? I still don’t get it. What does that have to do with computer functioning??

Def

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

4 Chapter 1: Bits and Bytes

the code could have also been simplified (and one lantern saved), if the scheme had been
off if by land, on if by sea.1

Suppose that the British were once again invading, and we had to send a new message to
Paul. The problem is that they also might be coming via air, so now there are three pos-
sibilities. We could of course use three lanterns/light bulbs, but we really don’t need to. On
the other hand, we can’t use just a single lantern, since we know that there are only two
combinations of messages (On or off). Fortunately, since we know that there were already
two lanterns available, we could use the following scheme:

Lantern 1. Lantern 2. Message Lanterns/Lightbulbs

 Off Off By Land

 Off On By Sea

 On Off By Air

 On On (Unused)

By this simple scheme, we can provide all three messages, with one additional possibility
to spare. Since a lantern can either be on or off, we can represent it as a binary digit (bit).
Hence, the code can be restated as:

 00 →→→→ By Land
 01 →→→→ By Sea
 10 →→→→ By Air
 11 →→→→ Unused

1 Of course, if one of the options were that the British might not attack, then there would be three states, and
one light bulb would be insufficient.

By Sea

By Land

Figure 1.3.

Figure 1.4.

Figure 1.5

Chapter 1: Bits and Bytes 5

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

Let’s take another example. Suppose that a student were to visit me in my office. After
each visit, the faculty member in the next office always comes in and asks me to rate the
student (from excellent to absolutely wretched). We decide to set up a signal system. On
the wall between our offices are four light switches, each one capable of sending two
messages (since each light switch can be either up or down).

All switches may be either:

 ���� Up
 or
 ���� Down

We agree on the following coding scheme:

 Switch Settings Student Rating Binary Representation

 ���� ���� ���� ���� Appears Dead 0000
 ���� ���� ���� ���� Don’t ask 0001
 ���� ���� ���� ���� Poor 0010
 ���� ���� ���� ���� Not Good 0011
 ���� ���� ���� ���� Average 0100
 ���� ���� ���� ���� Fair 0101
 ���� ���� ���� ���� Good 0111
 ���� ���� ���� ���� Very Good 1000
 ���� ���� ���� ���� Excellent 1001

Since our rating scheme only consisted of nine messages, we didn’t use up all
combinations of light switches. In fact, we could have developed 7 additional ratings
(1010, 1011, 1100, 1101, 1110, and 1111). If we now consider the pattern we have
developed, we notice a simple progression:

 Table 1.1.

No.
Bits

No.
Messages

Combinations

1 2 0 1

2 4 00 01 10 11

3 8 000 001 010 011 100 101 110 111

4 16 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Figure 1.6.

Figure 1.7.

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

6 Chapter 1: Bits and Bytes

 How Many BITs Do I need? �

Given that each bit has two possible states, for any number (n) of bits, the amount of infor-
mation conveyed (I) is:

 2n = I Formula 1.1

Continuing our table above, we note:
 Table 1.2.

No.
Bits

No.
Messages

No.
Bits

No.
Messages

No.
Bits

No.
Messages

No.
Bits

No.
Messages

0 20 = 1 6 26 = 64 12 212 = 4,096 18 218 = 262,144

1 21 = 2 7 27 = 128 13 213 = 8,192 19 219 = 524,288

2 22 = 4 8 28 = 256 14 214 = 16,384 20 220 = 1,048,596

3 23 = 8 9 29 = 512 15 215 = 32,768 21 221 = 2,097,152

4 24 = 16 10 210 = 1024 16 216 = 65,536 22 222 = 4,194,304

5 25 = 32 11 211 = 2048 17 217 = 131,072 23 223 = 8,388,608

There are a few things to note from this table:

1. Even though a bit has only 2 states, adding 1 bit doubles the amount of information
conveyed (i.e., 26 = 64 is twice as much as 25 (32)

2. It doesn’t take too many bits to convey an enormous amount of information (given 32
bits, we could convey 4,294,967,296 pieces of information; given 64 bits, we could
convey 264 = 9,223,372,036,854,780,000 pieces of information).

Therefore, given any number of bits, we can readily cal-
culate how much information we can convey.

No, the concept is the same. Suppose that I asked how many values given a single decimal
digit (0, 1, 2, 3, 4, 5, 6, 7, 8 or 9)? Obviously, the answer 10 (or 101 = 10). Now, assume
that I asked you how many values you could get given any combination of 2 decimal
digits? Once again, the answer is 102, or 100 different combinations (from 0 to 99). For any
number of decimal digits, the total number of representations would be:

? Can we predict how many bits we need in advance ??

Notes about Adding bits

? That’s a completely different way of doing it than in decimal !!!

Chapter 1: Bits and Bytes 7

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

 Table 1.3.

No.
Digits

No.
Messages

No.
Digits

No.
Messages

No.
Digits

No.
Messages

0 100 = 1 3 103 = 1,000 6 106 = 1,000,000

1 101 = 10 4 104 = 10,000 7 107 = 10,000,000

2 102 = 100 5 105 = 100,000 8 108 = 100,000,000

In fact, the basic formula is the same regardless of the numeric base (binary, decimal, octal
(base 8) or hexidecimal (base 16). (We will consider base 8 and base 16 later)

The real formula should be:

I = Bn
Where:
 I is the amount of information (combinations) attained
 B is the numeric base (binary, octal, decimal, hexadecimal, or any other)
 n is the number of digits (in that base) available

To determine the number of bits required, given that we know the number of messages
(information) we need, the procedure is reversed:
 I = 2n Formula 1.2.
 log(I) = n * log(2)
 = n * 0.30103
 log(I)/.30103 = n

For Example:
 Table 1.4.

Number
Message

s

Number of
Bits Needed

Number
Messages

Number of
Bits Needed

2 log(2)/.30103 = .30103/.30103 = 1.00 20 log(20) /.301= 1.30/.301 = 4.32

3 log(3)/.30103 = .41771/.30103 = 1.39 60 log(60) /.301= 1.78/.301 = 5.91

5 log(5)/.30103 = .69897/.30103 = 2.32 100 log(100) /.301= 2.00/.301 = 6.64

8 log(8)/.30103 = .90309/.30103 = 3.00 500 log(500) /.301= 2.70/.301 = 8.96

12 log(12)/.30103 = 1.0791/.30103 = 3.58 1,000 log(1,000) /.301= 3.00/.301 = 9.96

? But, what if I know how much information I wish to convey. How do I
determine how many bits I need ??

Notes about different bases

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

8 Chapter 1: Bits and Bytes

We can’t. As we saw with our examples about lanterns/light-bulbs and light switches, if we
have more capacity than we need, the remaining combinations go unused. Therefore, the
correct formula is:

 Formula 1.3.

 log(I)/.30103 = n where: means ceiling; the value rounded

to the next integer

Therefore, for a given number of pieces of information:

 Table 1.5.

Number
Messages

Number of
Bits Needed

Number
Messages

Number of
Bits Needed

Number
Messages

Number of
Bits Needed

2 1 20 1 5,000 13

3 2 60 2 10,000 14

5 3 100 3 100,000 17

8 3 500 3 1,000,000 20

12 4 1,000 4 100,000,000 27

Of course we could have gotten the same information from the table where we converted

the number of bits into the amount of information
which could be conveyed.

Bits and Computers2

t this point, it should be obvious that we have gone through this explanation of Bits
because computers rely on these concepts to store and manipulate data. We might best

explain this by illustrating how data was stored in older (pre-integrated circuit)
technologies.

The first and second generation of computers was extremely expensive. One reason
(among many others) was because of how the data was stored in either the
CPU (Central Processing Unit) or RAM (Random Access Memory), both
of which basically stored data the same way. We have already seen how
we could store, and pass along, information using lanterns or light switches. The computer

2 A number of statements and examples are simplified for the sake of illustration

A

? How can we have partial bits ?? How could we have 1.39 Light Switches ??

 How do I calculate my needs? �

Figure 1.8.

Off On

Def

Chapter 1: Bits and Bytes 9

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

manipulates data in basically the same manner. Early computers, rather than using
switches, relied on small rings known as donuts (they were about the size of a printed ‘o’
on this paper), which had two wires passing through them3. These donuts had wires passing
through them, and the wires either had voltage passing along them or not. Hence, as shown
in Figure 1.8., they were either in an on4 (shaded) or off (unshaded) state (a binary
condition).

If we were to look inside one of these early machines, we might see architecture that
resembles the illustration below. Note that some of the first machines had only about 1,000
‘donuts’ (a row of 16 (all in an off position) are illustrated in Figure1.9.)

 Figure 1.9.

If there was voltage running through the wires, the donut was in an on (or high voltage)
state; if not, it was in an off (or low voltage) state. For example:

Voltage: Figure 1.10.

In this case, if we assume that the shaded donuts are ‘on’, and the unshaded donuts are
‘off’, then we would have a bit pattern which would be: 0010111000101011

The power of computers lies in their ability to quickly change each
donut/bit from one state (e.g., on) to another (e.g., off). How quickly? The
original IBM-PCs ran at 4.77 MHz (Megahertz, or millions of cycles per
second; often referred to as clock speed, or the speed at which the CPU operates). The new
(at the time of this writing) Processors are running at about 2.8 GHz (GigaHertz, or
Billions of cycles per secone). That means that 2,800,000,000 different messages can
(theoretically) be transmitted every second.

The real question which needs to be addressed is How many bits, or donuts’, do we have
to group together to be able to represent what we need?

Bytes

In response to the above question, the answer is: How much information do you want?

3 Contrary to popular belief, bits are really not ‘on’ or ‘off’, but rather carry either high voltage or low voltage
through them. High voltage implies that both wires have voltage running through them; low voltage implies
that voltage is running through only one of the wires.

4 In point of fact, there was either high or low voltage passing through them, but the concept remains the
same.

Def

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

10 Chapter 1: Bits and Bytes

 What is a byte ? �

That really was the underlying question for the first computer engineers. Obviously, it was
necessary to represent the digits (0..9), the alphabet (a...z, A..Z) and some special symbols
(! @ # $ % ^ * ()). At very minimum, we might like to represent 94 symbols:

 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
 52 alphabetic characters (26 lower case, 26 upper case)
 32 special characters (! @ # $ % ^ & * () _ - + | \ = - ` ? < > . : ; “ ‘ { } [] \)
 94 characters

which means that we would need to group together 7 bits since

n = log(I)/log(2) = log(94)/.30103 = 1.97313/.30103 = 6.55 = 7

With 34 combinations unused since 27 = 128 (128 - 94 = 34). There are also a number of
'hidden' symbols (Carriage returns, line-feeds, backspaces, etc.) which we also need to
represent, so that unused combinations will not go to waste.

Finally, one more bit was deemed necessary. This bit can be used to either represent more
characters (e.g., other alphabets, symbols, etc.) or to detect errors in data. When used for
this latter purpose, the additional bit is referred to as a parity bit, which brought the total
number of bits needed to 8 (We will discuss parity bits shortly).

This total number (8) of bits is universally known
as a byte, and it is considered the minimum

number of bits required to represent the total character set described above AND guard
against storage errors5.

No particular reason, other than that it what IBM decided to call it. Since IBM was the
primary producer of computers when these issues were
being settled, they could basically do whatever they
wished, and they wished to call it a byte.

Parity

5 There is no rule that bits should be grouped together in 8-bits to form a character set. Some early
computers, such as CDC’s Cyber, used a 6-bit character set. This was achieved by using only capital letters
(Cyber was a ‘number-cruncher’ and wasn’t concerned with word-processing).

?
����

Why is it called a byte?

�������������Why is it called a byte ? �

?
����

NOW, What was this about parity? I’ve heard of that before.

? Why do we need parity, and how does it work ??

Def

Chapter 1: Bits and Bytes 11

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

ell, first of all, hardware mistakes can happen, especially in the earlier computers6. A
parity bit is intended as a method for catching obvious errors, although it can not

catch them all. It works in a very simple manner:

Suppose that we decide that we need to represent only 16 pieces of information. We know
that we would need a total of four bits (since 24 = 16). Suppose that we wished to transmit
the message:

Figure 1.11.
Voltage: On Off On On

 � � � �

Bit Pattern: 1 0 1 1

Suppose also that the data is transferred, but because of a hardware problem, not as 1011,
but as 1001. That is, as:

Figure 1.12.
Voltage: On On Off On

 � � � �

Bit Pattern: 1 0 0 1

A parity bit is an additional bit added to a sequence of bits in order to catch
some of these blatant errors. If we look at the 2 sequences of bits, we notice
that the first one (the message we intended) has three ‘1’ bits while the
other (the mis-sent message) has two. The parity bit, in essence, is intended to catch
obvious errors such as this one.

Well, the number of ‘1’ bits can either be either odd or even number; there are no other
choices. In the first case, there is an odd number (three) of ‘1’s; in the second, there is an
even number. The first issue, then, is which one do you expect? If you expect all data
transmitted to have even parity (an even number of ‘1’ bits), you would add a ‘1’ to the
four-bit sequence and transmit it as the five-bit sequence 10111 (containing a total of 4 ‘1’
bits). If you expect all data transmitted to have odd parity (an odd number of ‘1’ bits), you

6 Early computers, especially first generation machines, were prone to a number of errors. They relied on
Vacuum Tubes which gave off an enormous amount of light and heat, which in turn attracted a number of
bugs. When these bugs landed on the circuitry, they would be ‘fried’ on the wiring and in turn cause the data
transmitted along the wires to be sent incorrectly. Early programmers spent much of their time scrapping the
bugs off the wires. This is where the term debugging came from.

W

? How ??

Def

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

12 Chapter 1: Bits and Bytes

would add a ‘0’ to the four-bit sequence and transmit it as the five-bit sequence 10110
(containing a total of 3 ‘1’ bits).

Figure 1.13.

In our case, if we assume even parity and send our message (1011) as 10111, and we in fact

end up sending the message 10011 (which contains an odd number
of ‘1’ bits), the receiver will know that something is wrong.

Neither one is better than the other7. The only important issue is that BOTH the sender and
receiver MUST agree on one or the other. If the sender assumes even parity, and the
received assumes odd parity, well, the messages received will obviously be interpreted as
errors.

Obviously, the method is not fail-proof. If, for example, we wish to send the message 1011
and we want to use odd parity. We will send the sequence 10110. If, however, there is an
error and we actually send the message 1100 (again adding a ‘0’ as a parity bit to make it
odd), the receiver will interpret the message as correct (since the number of ‘on’ bits is
odd). However, if there are enough transmissions (it doesn’t take too many or too long,
especially if we are operating at 450 MHz), we will pick up the error. The scheme is
similar to the concept of check-digits, which are used by businesses to help pick up errors
in data entry8.

7 Odd Parity actually appears to be somewhat more common than even parity
8 Although we won’t go into a detailed discussion here, almost every business which relies on data to be
entered at the keyboard uses check-digits, which work much like parity bits. Check your telephone bill.
Since you are the only person in the United States with your telephone number (a three-digit area code, and a
seven-digit telephone number), you would expect your account number to be ten-digits long. More than
likely, it’s 13 digits long. The additional digits are referred to as check-digits.

Parity Bit

Even Parity:

Odd Parity:

Message to be Sent:

 1 0 1 1

 1 0 1 1 0

 1 0 1 1 1

?
����

Which is better? Is parity supposed to be odd or even ??

? Will this approach catch all errors in transmission ??

��������What is Parity ? �

Chapter 1: Bits and Bytes 13

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

The Abstract Data Type Character

lthough we will save our discussion of basic data types until Chapter 2, in fact, we
have just introduced our first basic data type: The character (sort of; we will discuss

the character data type in more detail in chapter 2). If we think about it, characters are
really abstractions. While we are accustomed to the Roman alphabet, it is not the only one
in use. There is the Greek Alphabet, Sanskrit, the Cyrillic Alphabet, the Chinese Alphabet,
the Hebrew Alphabet, the Arabic Alphabet, and so forth. All of them accomplish the goal
(communication), but all do so differently. What sequence of bits should represent any
symbol is likewise arbitrary.

High and low voltage may not necessarily be abstract, but the
manner in which we interpret if can be. We know that bits need
not be separated into groups of eight because of some natural
phenomenon. The bits, or donuts, are all laid-out in rows, as
illustrated in Figures 1.9. and 1.10. We logically group them,

and retrieve them, in bunches of eight, or as an octet. We could group them together in
bunches of six (as some manufacturers once did), or 7, or 12, or 25, or 105, or even 1,000.
It doesn’t really matter. It only matters that we know how they are grouped.

The manner in which we interpret the grouping is equally as arbitrary, although with some
foresight as to how they could best be manipulated. For our purposes, we will use the term
abstract to mean that we our usage of the data stored in
the computer is based on our conceptual models of the
data can be manipulated, not necessarily on how it is
physically stored.

This does bring up an interesting point, however: How abstract should we be? The manner
in which data is stored may be open to some interpretation, but there needs to be some
common ground.

ASCII

aving (more-or-less) agreed upon the use of a 8-bits as a byte to represent a complete
character set, another problem developed. It was similar to the you say 'toe-maa-toe'

and I say 'ta-may-tow' situation. Take, for example, the letter ‘c’, as in the word cop (slang
for policeman). No problem. That is, unless you are speaking Russian, where the letter ‘c’
is pronounced as an ‘s’ and the word ‘cop’ (a ‘p’ is an ‘r’ and ‘cop’ is pronounced as sor)
means rubbish.

A

We Already Know:
A byte is called a byte and
contains 8-bits because IBM
decided so.

H

? But how can data types be abstract? High and low voltage doesn’t seem
abstract.

What are Abstract Data Types?���� �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

14 Chapter 1: Bits and Bytes

While humans can usually recognize differences in pronunciation and meaning, computers
can not. Once a coding scheme is established, that machine will recognize only that
scheme. If, using a seven bit character set, we instruct the computer to interpret the
sequence of on-off voltaged donuts/bits ‘1000011’ as the character ‘C’, that is all that it
will ever represent. It will not be viewed as an ‘S’.

The problem was that each manufacturer began building machines based on their own
coding schemes. For example, if there were three manufacturers of computers, their coding
schemes might appear as:

 Table 1.6.

Binary
Sequence

Manufacturer #1
Interpretation

Manufacturer #2
Interpretation

Manufacturer #3
Interpretation

00000000 A 0 EOF (End of File)
00000001 B 1 TAB (Tab)
00000010 C 2 SP (Space

• • • •
00001001 0 a A
00001010 1 b B
00001011 2 c C

• • • •
01111110 CR (Return) X 0
01111111 BS (BackSpace) Y 1
11111111 NULL Z 2

Of course, this meant that data stored on one computer could not be transferred to another,
at least not without interpreting it first. If Manufacturer #1 wished to send the message
“Hello”, Manufacturer #2 might interpret it as “$^[+-“ and Manufacturer #3 might view
not get any message, since the characters transmitted were all “hidden”, as far as they were
concerned. In the early days of computers, intercommunication was not a valued asset.

Consequently, a committee was formed to try and standardize the character set and the
manner in which the symbols would be represented in binary. The resultant
scheme became known as the American Standard Code for Information
Interchange (ASCII). Contrary to popular belief, ASCII is not some unique

language or specialized set of instructions (as we have heard it des-
cribed before). It is nothing more than an agreement on interpretation,

an agreement which most (more on that later) software developers accept.

The complete ASCII character set is given at the end of this Chapter, in Addendum 1.1.
Lest we encourage you skip to the end of the chapter now, a partial listing is given in Table
1.6.

Def

What is ASCII ?���� �

Chapter 1: Bits and Bytes 15

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

 Table 1.7.

Bit
Sequence

ASCII
Value

Character

Description

Bit
Sequence

ASCII
Value

Character

Description

00000000 0 NULL Null 01000001 65 A Cap. A
00000001 1 SOH Start Head 01000010 66 B Cap. B
00000010 2 STX Start Text 01000011 67 C Cap. C

• • • • • • • •
00100000 32 SP Space 01100001 97 a Lower a
00100001 33 ! Exclamation 01100010 98 b Lower b
00100010 34 “ Quote.Mark 01100011 99 c Lower c

• • • • • • • •
00110000 48 0 Zero 01111101 125 } Rt. Ellipses
00110001 49 1 One 01111110 126 ~ Tilde
00110010 50 2 Two 01111111 127 DEL Delete

The table is generally self-explanatory. Binary sequence refers to how the value is actually
stored in the computer. Character refers to the agreed upon symbol which the binary
sequence represents. The column ASCII Value may however, puzzle some of you. You
will notice that there is a definite order to the way in which the ASCII binary sequences are
laid out. Because they are ordered, they can be numbered sequentially (starting with 0).
Thus, if someone makes a reference to ASCII 65, they are not talking about the binary
representation for 65 (there is none), but rather to the 65th (actually, 66th) entry on the
ASCII list (i.e., the upper case character ‘A’).

The Standard ASCII Character set contains 128 characters (ASCII Values 0 through 127).

Let’s not forget that these tables were developed in an era where there were frequent
hardware breakdowns and transmission problems. Although we decided to group bits
together in collections of eight (8), of those, one bit was needed for the parity bit. Hence,
we had 27 = 128 (which meant the values 0 through 127) combinations to use.

This is all true, and there is an Extended ASCII Character Set, which does allow us to use
all 8-bits, or 256 characters9. Since the major characters needed (at least for the American
English character set) were included in the standard ASCII character set, the additional 128
characters are combinations of non-English letters (e.g., é, ä, å), common, but previously
omitted symbols (e.g., ¢, £), graphics characters, and frequently used Greek
letters and Mathematical symbols (e.g., α, β, γ, Σ, ±, ≥, ≤). The addendum

9 The extended ASCII character set is not standardized.

? Why 128 characters?

?
����

But Computers are much more reliable now. Why don’t we use all of the
eight bits in a byte (or 28 = 256) to represent a character set ??

Def

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

16 Chapter 1: Bits and Bytes

(Addendum 1.2.) at the end of the chapter includes the complete (extended) ASCII listing.

ASCII Files

fter reading the above discussion, there might be some implication to the term ASCII
File. An ASCII file is one which stores data, in 8-bit formats, according to the ASCII

scheme we have just described. It’s really that simple. If you try and
display the contents of a file from an operating system such as DOS10, the
assumption is that it is an ASCII file. That means that when that when it

goes to display the file, it takes 8-bits at a time, matches up the 8-
bit sequence against the ASCII table, and prints out the character
associated with the sequence.

Notice, however, that not all files are in ASCII format (in fact, most are not). For example,
this document was created in MS-Word. It contains a number of different formats, such as
italics, boldface, underlining, superscripts, subscripts, indentations, and commands which set the
margins, pagination, footnotes, and others. Look at your ASCII tables. Are there any
sequences of bits which indicate that any of these operations are to be applied? If you were
to try and display this file through the operating system, or reading it directly into a ‘Text
Editor’, you would see a number of strange symbols (e.g., �, ♠, ¤), and the screen might
jump down, or might make beeping sounds. Very simply, that is because the system takes
the bits 8 at a time, when in fact, MS-Word might be grouping them as 6, or 16, or 32 bits.
Most application packages store data in different ways; the only way to manipulate the data
contained in them is through the package. The same holds true for executable, or binary
files, which are put together in a non-ASCII format which the operating system can
understand.

Yes and no. All files do indeed store data as bits, and in a binary sequence, but not all files
are ASCII Files. ASCII files assume that 1-byte (8 bits) are sufficient to completely
represent a piece of datum. As we will soon see, that is not always the case. As we have
also seen, sometimes we don’t really need all 8-bits. In ASCII files, we use 8-bits, whether
we need that much or not. Binary files might use more than 8-bits (say 16, or 32, or 64) to
store a particular piece of data.

10 Some of the newer operating systems, such as Windows 98, analyze the file before attempting to display
them, and can display non-ASCII files.

A

?
����

What does this have to do with the expression I often hear: An ASCII file?

Def

What is an ASCII file?���� �

?
But, that makes no sense. Aren’t all ASCII files also binary files (i.e., stored

as groupings of bits)?

Chapter 1: Bits and Bytes 17

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

This will hopefully all start making more sense in the next chapter, when we start
discussing the manner in which we store different types of data.

Well …… Not quite

EBCDIC

he idea behind ASCII was certainly relevant. All machines would same coding
scheme, and thus data could be readily transferred between them. Programs could be

written to run on any machine, and certainly data stored in ASCII format could be used,
regardless of platform.

IBM decided not to adopt this scheme for
all of its machines, and uses its own stan-

dard, the Extended Binary Coded Decimal Interchange Code (EBCDIC)11.
The coding scheme works just like ASCII, but the sequence of symbols represented varies.

For the sake of contrast, the EBCDIC (vs. ASCII) scheme is also given
at the end of this chapter, in Addendum 1.3.

Yes, ASCII is used by IBM-PCs (and all the IBM clones). However, that is because IBM
did not develop the original operating system for the PC12. Microsoft developed DOS for
their PCs, and they decided to use ASCII. It is the primary reason Bill Gates is the richest
man in the world (IBM would not be amused at this explanation).

Yes, it’s still in use. All IBM machines, except their PCs use it. It is also frequently used
for storing data on large tape drives. Not surprisingly, many of these tape drives are
produced by IBM. The standard character sets are essentially the same (only two characters

11 Basically, if you are as big as IBM was, you get to call all of the shots. Since you own the football, if you

don’t like the way the game is being played, you take your football and go home.
12 There are two rationales frequently given for this. One is that IBM wanted to get their PCs out in a hurry

and felt that if they developed their own operating system the PC would be delayed. The other is that they
felt that the PC was a ‘fad’ and that they should not expend the resources required for development.

T

?
����

???????????????????

? Alright. At least we know now all that character data is stored in ASCII.
Right ???

? That can’t be true! I have an IBM-PC at home, and it uses ASCII, doesn’t it?

? Is EBCDIC still in use? I haven’t heard much about it.

Do all computers use ASCII? �
Def

What is EBCDIC? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

18 Chapter 1: Bits and Bytes

differ), although the order (how the characters are related to the bit patterns) are quite
different. Compare Addendum 1.1 with Addendum 1.3.

Unicode

n later years, it become apparent that even 256 characters were insufficient to represent
all of the symbols needed. The scientific community, book publishers, and bibliographic

information services needed considerably more symbols. Additionally, as noted earlier,
there was a lack of international character set standards, and the onset of the Internet was
forcing demand for software to be simultaneously internationalized and localized.

In response, the Unicode Project was undertaken in 1988. Project members sought a uni-
form method of encoding which would be more efficient and flexible than existing
systems. Today, the Unicode Standard encompasses the principal scripts of the world, and
provides the foundation for the internationalization and localization of software, including
Java, Windows NT, AIX, Visual C++, NetWare 4.0, and QuickDraw GX. Languages that
can be encoded include Russian, Arabic, Anglo-Saxon, Greek, Hebrew, Thai, and Sanskrit.
The unified Han (China, Japan, Korea) subset contains 20,902 ideographic characters
defined by the national and industry standards of each country, as well as Taiwan. In
addition, the Unicode Standard includes mathematical operators, technical symbols,
geometric shapes, and dingbats.

It isn’t. Unicode requires a 2-byte (16-bit) character set. As we will see in Chapter 2, if we
have 16-bits, we have a total of 65,536 combinations.

Summary

his chapter was intended as a very simple introduction to what a bit is, what a byte is,
and why it is important to understand, and how the computer manipulates bits and

bytes. Along the way, we introduced our first basic abstract data type, the character,
although additional discussion will be provided in Chapter 2. The main intent of this
chapter, however, is to lay the groundwork for the understanding of the other two chapters
in section I.

If, during the reading of this chapter, you felt bored, Congratulations! The material covered
might indeed be simplistic. However, realize that that doesn’t mean it is not important. As
we stated when we first began this chapter, the material covered forms the genetic
underpinnings (if you will) of computer functioning.

I

T

? But, how is that possible using only 8-bits ???

Chapter 1: Bits and Bytes 19

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

Chapter Terminology: Be able to fully describe these terms

Abstract Data Type Donut
ASCII EBCDIC
ASCII Files Even Parity
Binary IBM
Bit MHz
Byte Odd Parity
Character Data Types Parity
Character Set Parity Bit
Clock Speed RAM
CPU

Review Questions

1. Describe three binary conditions which people experience on a daily basis.

2. Remember the student evaluation schemes which the professor in the next-door office
and I established? Good News. Five (5) new light switches have been added, bringing
the total number of light switches to 9. How many student ratings could we now
assign?

3. I am starting my own language. It will consist of only the consonants (B, C, D, F, G, H,
J, K, L, M, N, P, Q, R, S, T, V, W, X, Y, Z) which can only be represented in
Uppercase. Additionally, I will only allow octal (8 and 9 are not allowed). To further
simplify matters, I will only have 5 special characters (+ - space . ,) and 4 hidden
characters (CR, LF, EOL, and ESC). I don’t care about Parity (my machines will be
perfect). How many bits do I need to fully represent the entire character set?

4. I have built a new computer that operates at 32.76 MHz. Theoretically, how many
times could I change the signal it contains in 1 hour, 15 minutes, and 13 seconds?

5. How many bits would I need to:

a. represent all lower case characters?
b. represent all states in the United States?
c. represent all individuals in the United States (assume 250 Million)?
d. represent the National Deficit (1998: Approximately $4.5 Trillion)?

6. How much Information could I represent given

a. 5 bits?
b. 11 bits?
c. 24 bits?
d. 138 bits?

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

20 Chapter 1: Bits and Bytes

7. Explain what a byte is, why it is called a byte, and how many characters can be repre-
sented.

8. How many bytes are in a kilobyte (exactly)? Why?

9. Explain why parity bits were created. Explain the difference between odd and even
parity. Given the following bit patterns, show how they would be represented (for the
given parity):

a. 100 (odd parity) c. 110101 (odd parity)
b. 100 (even parity) d. 110101 (even parity)

10. Explain why the data type character is referred to as an abstract data type.

11. Explain what ASCII and EBCDIC are. Why are they different?

12. Describe what an ASCII file is. Are there such things as EBCDIC Files?

13. What is a binary file?

14. Memorize the ASCII and EBCDIC tables (this is not a joke; if you were taking a
computer science course at a respectable university, you would probably be required to
memorize the entire table, in decimal, octal and hexadecimal). If that seems excessive,
you might try memorizing the following selections:

 Decimal Char Description
 ====== ==== ===========
 0 NUL Null
 • • •
 7 BEL Rings Bell

 8 BS Backspace
 • • •
 13 CR Carriage Return
 • • •
 27 ESC Escape
 • • •
 32 SP Space
 • • •
 48 0 Zero
 ……….. To …………..
 57 9 Nine
 • • •
 65 A Uppercase A
 ……….. To …………..
 90 Z Uppercase Z
 • • •
 97 a Lowercase a

 ……….. To …………..
 122 z Lowercase z

Chapter 1: Bits and Bytes 21

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

There are actually only nine (9) decimal values that you need to memorize. If you know
that that decimal representation of the character ‘0’ is 48, then you know that ‘1’ is 50, ‘2’
is 51, and so forth. If you know that the representation of the character ‘a’ is 97, then you
know that ‘b’ is 98, ‘c’ is 99, and so forth. You end up knowing 67 ASCII values.

Answers to Review Questions (NOTE: checking the answers before you have
tried to answer the questions doesn’t help you at all)

1. On/Off, Male/Female, AM/PM, Married/Unmarried, Dead/Alive, etc.
 (Note: Each of these are truly binary states: One is, for example, either married or un-

married; contrary to some beliefs, on cannot be partially married or partially unmarried.
Similarly, High/Low is NOT a binary condition, since there are an infinite number of
levels between high and low).

2. I = 29 = 512.

3. Given: 21 Letters + 8 Digits + 5 Special characters + 4 Hidden Characters = 38 Characters

 Log(38)/Log(2) = 1.5798/0.30103 = 5.248 = 6 Bits

4. 1 hour = 60 minutes
 + 15 minutes
 75 minutes * 60 = 4,500 seconds
 + 15 seconds
 4,515 seconds * 32,760,000 = 147,911,400,000 times

5. a. 26 characters => n = log(26)/log(2) = 1 .41497/ 0.301 = 4.7341 = 5

 b. 50 States => n = log(50)/log(2) = 1.69897/ 0.301 = 5.6444 = 6

 c. 250 Million => n = log(250M)/log(2) = 8.39794/0.301 = 27.9 = 28

 d. 4.5 Trillion => n = log(4.5T)/log(2) = 12.653/0.301 = 42.18 = 43

6. a. 5 bits = 25 = 32 pieces of information

b. 11 bits = 211 = 512 pieces of information

c. 24 bits = 224 = 16,777,216 pieces of information

d. 138 bits = 2138 = 34,844,914,372,700,000,000,000,000,000,000,000,000,000 pieces of
information

What questions should I know? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

22 Chapter 1: Bits and Bytes

7. One byte equals eight bits and can contain up to 28 = 256 pieces of information,
although the standard character set contains only 27 = 128 pieces of information, with
one bit allocated as a parity bit. The reason it is called a byte is because IBM decided
that is what it would call it.

8. One kilobyte = 1,024 bytes because 210 = 1,024, and that is as close as we can get to
1,000 using the binary numbering system.

9. a. 100 (odd parity): 1000

b. 100 (even parity): 1001
c. 110101 (odd parity): 1101011
d. 110101 (even parity) 1101010

10. An abstract data type is one which we logically perceive. It does not necessarily mean

that it is (physically) stored in that fashion.

11. ASCII and EBCDIC are both character coding schemes, albeit different. ASCII is used

by most computer manufacturers. EBCDIC is used exclusively by IBM, which does so
(essentially) because they feel like it, and can get away with it.

12. An ASCII file is one which saves each consecutive 8-bits according to the ASCII

coding scheme. EBCDIC files do exist; they are files which save each consecutive 8-
bits according to the ASCII coding scheme.

13. Binary files are files which do NOT save data according to ASCII (or EBCDIC) coding

schemes (more discussion in later chapters).

Chapter 1: Bits and Bytes 23

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

C/C++ Programming Assignments

1. Type in, compile and run the following C/C++ program.

#include <stdio.h> // Include the Standard Input-Output (IO) C Header File
#include <iostream.h> // Include the Standard Input-Output (IO) C++ Header File
int main(void) // main is a function name which returns an integer
{ // This is similar to a BEGIN statement in Pascal
 char ch; // ch is the variable where we will store an ASCII character
 ch = '/'; // Assign the ASCII Character T to the variable ch
// Let’s first print out the values using C
 printf("The values of character %c are %d decimal, %o octal and %X Hexadecimal\n",
 ch,ch,ch,ch);

/* The output from the above statement will appear as:
 The values of character / are 47 decimal, 57 octal and 2F Hexadecimal */

 ch = 38; // Assign ASCII 38 (decimal) to the variable
// Now let’s print out the values using C++
 cout << “The values of character” << ch <<”are” << dec << (int) ch <<”decimal” << oct

<< (int) ch << “octal and “ << hex << (int) ch << “Hexadecimal” << endl;

/* The output from the above statement will appear as:
The values of character & are 38 decimal, 56 octal and 26 Hexadecimal */

 ch = 0115; // putting 0 (zero) in front assigns the Octal value
 printf("The values of character %c are %d decimal, %o octal and %X Hexadecimal\n",
 ch,ch,ch,ch);

/* The output from the above statement will appear as:
 The values of character M are 77 decimal, 115 octal and 4D Hexadecimal */

 ch = 0X6b; // putting 0X (Zero X) in front assigns the hexadecimal val
 cout << “The values of character” << ch <<”are” << dec << (int) ch <<”decimal” << oct

<< (int) ch << “octal and “ << hex << (int) ch << “Hexadecimal” << endl;

/* The output from the above statement will appear as:
 The values of character k are 107 decimal, 153 octal and 6B Hexadecimal */

 return(0); // Return a 0 (Since the function main is of type int)
} // End of function main

Suggestion: Since all of the printf and cout statements are identical, cutting and pasting
would be appropriate

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

24 Chapter 1: Bits and Bytes

2. Modify the above program as follows: Spell out each letter of your name, alter-

nating each letter in your name as an ASCII symbol, a decimal value, an octal
value, and a hexadecimal value. Place the code needed just before the return
statement.

In other words, depending on the number of letters in your name, you would enter:

 letters: 1, 5, 9, 13, …. Enter the input as characters
 letters: 2, 6, 10, 14, …. Enter the input as integers
 letters: 3, 7, 11, 15, …. Enter the input as octal numbers
 letters: 4, 8, 12, 16, …. Enter the input as hexadecimal numbers

For example, my name (Peeter Kirs) would be entered as:

 ch = ‘P’; printf(“%c”,ch); // The ASCII character ‘P’
 ch = 101; cout << ch; // The decimal representation for the character ‘e’
 ch = 0145; printf(“%c”,ch); // The Octal representation for the character ‘e’
 ch = 0x54; cout << ch; // The Hexadecimal representation for the character ‘t’

ch = ‘e’; printf(“%c”,ch); // The ASCII Character ‘e’
ch = 101; cout << ch; // The decimal representation for the character ‘r’
ch = 040; printf(“%c”,ch); // The octal representation for the character ‘ ’ (Space)
ch = 0X4b; cout << ch; // The Hexadecimal representation for the character
‘K’
ch = ‘i’; printf(“%c”,ch); // The ASCII character ‘i’
ch = 114; cout << ch; // The decimal representation for the character ‘r’
ch = 0163; printf(“%c”,ch); // The Octal representation for the character ‘s’

Once again, since the printf and cout statements are identical, and the assignment
statements are almost identical, a cut-and-paste is suggested.

Chapter 1: Bits and Bytes 25

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

Addendum 1.1: The Standard ASCII Character Set
Binary Dec. Oct. Hex. Char. Description Binary Dec. Oct. Hex. Char.
Description
0000000 0 0 0 NUL Null, Tape Feed 1000000 64 100 40 @ At Sign
0000001 1 1 1 SOH Start of Heading 1000001 65 101 41 A Upper Case A
0000010 2 2 2 STX Start of Text 1000010 66 102 42 B Upper Case B
0000011 3 3 3 ETX End of Text 1000011 67 103 43 C Upper Case C
0000100 4 4 4 EOT End of Transmission 1000100 68 104 44 D Upper Case D
0000101 5 5 5 ENQ Enquiry 1000101 69 105 45 E Upper Case E
0000110 6 6 6 ACK Acknowledge 1000110 70 106 46 F Upper Case F
0000111 7 7 7 BEL Ring Bell 1000111 71 107 47 G Upper Case G
0001000 8 10 8 BS Backspace 1001000 72 110 48 H Upper Case H
0001001 9 11 9 HT Horizontal Tab 1001001 73 111 49 I Upper Case I
0001010 10 12 A LF Line Feed 1001010 74 112 4A J Upper Case J
0001011 11 13 B VT Vertical Tab 1001011 75 113 4B K Upper Case K
0001100 12 14 C FF Form Feed 1001100 76 114 4C L Upper Case L
0001101 13 15 D CR Carriage Return 1001101 77 115 4D M Upper Case M
0001110 14 16 E SO Shift Out 1001110 78 116 4E N Upper Case N
0001111 15 17 F SI Shift In 1001111 79 117 4F O Upper Case O
0010000 16 20 10 DLE Data Link Escape 1010000 80 120 50 P Upper Case P
0010001 17 21 11 DC1 Device Control 1 1010001 81 121 51 Q Upper Case Q
0010010 18 22 12 DC2 Device Control 2 1010010 82 122 52 R Upper Case R
0010011 19 23 13 DC3 Device Control 3 1010011 83 123 53 S Upper Case S
0010100 20 24 14 DC4 Device Control 4 1010100 84 124 54 T Upper Case T
0010101 21 25 15 NAK Negative Acknowledge 1010101 85 125 55 U Upper Case U
0010110 22 26 16 SYN Synchronous Idle 1010110 86 126 56 V Upper Case V
0010111 23 27 17 ETB End Transmission Block 1010111 87 127 57 W Upper Case W
0011000 24 30 18 CAN Cancel 1011000 88 130 58 X Upper Case X
0011001 25 31 19 EM End of Medium 1011001 89 131 59 Y Upper Case Y
0011010 26 32 1A SUB Substitute 1011010 90 132 5A Z Upper Case Z
0011011 27 33 1B ESC Escape 1011011 91 133 5B [Left Bracket
0011100 28 34 1C FS File Separator 1011100 92 134 5C \ Back Slash
0011101 29 35 1D GS Group Separator 1011101 93 135 5D] Right Bracket
0011110 30 36 1E RS Record Separator 1011110 94 136 5E ^ Carat
0011111 31 37 1F US Unit Separator 1011111 95 137 5F _ Underscore
0100000 32 40 20 SP Blank Space 1100000 96 140 60 ̀ Grave Accent
0100001 33 41 21 ! Exclamation 1100001 97 141 61 a Lower Case a
0100010 34 42 22 " Quotation Mark 1100010 98 142 62 b Lower Case b
0100011 35 43 23 # Pound/Number Sign 1100011 99 143 63 c Lower Case c
0100100 36 44 24 $ Dollar Sign 1100100 100 144 64 d Lower Case d
0100101 37 45 25 % Percent Sign 1100101 101 145 65 e Lower Case e
0100110 38 46 26 & Ampersand 1100110 102 146 66 f Lower Case f
0100111 39 47 27 ‘ Single Quote 1100111 103 147 67 g Lower Case g
0101000 40 50 28 (Left Parentheses 1101000 104 150 68 h Lower Case h
0101001 41 51 29) Right Parentheses 1101001 105 151 69 i Lower Case i
0101010 42 52 2A * Star/Multi. Sign 1101010 106 152 6A j Lower Case j
0101011 43 53 2B + Plus Sign 1101011 107 153 6B k Lower Case k
0101100 44 54 2C , Comma 1011000 108 154 6C l Lower Case l
0101101 45 55 2D - Minus/hyphen 1101101 109 155 6D m Lower Case m
0101110 46 56 2E . Period 1101110 110 156 6E n Lower Case n
0101111 47 57 2F / Slash 1101111 111 157 6F o Lower Case o
0110000 48 60 30 0 Zero 1110000 112 160 70 p Lower Case p
0110001 49 61 31 1 One 1110001 113 161 71 q Lower Case q
0110010 50 62 32 2 Two 1110010 114 162 72 r Lower Case r
0110011 51 63 33 3 Three 1110011 115 163 73 s Lower Case s
0110100 52 64 34 4 Four 1110100 116 164 74 t Lower Case t
0110101 53 65 35 5 Five 1110101 117 165 75 u Lower Case u
0110110 54 66 36 6 Six 1110110 118 166 76 v Lower Case v
0110111 55 67 37 7 Seven 1110111 119 167 77 w Lower Case w
0111000 56 70 38 8 Eight 1111000 120 170 78 x Lower Case x
0111001 57 71 39 9 Nine 1111001 121 171 79 y Lower Case y
0111010 58 72 3A : Colon 1111010 122 172 7A z Lower Case z
0111011 59 73 3B ; Semi-colon 1111011 123 173 7B { Left Elipses
0111100 60 74 3C < Less Than Sign 1111100 124 174 7C | Vertical Line
0111101 61 75 3D = Equality Symbol 1111101 125 175 7D } Right Elipses
0111110 62 76 3E > Greater Than Sign 1111110 126 176 7E ~ Tilde
0111111 63 77 3F ? Question Mark 1111111 127 177 7F DEL Delete

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

26 Chapter 1: Bits and Bytes

Addendum 1.2: The Extended ASCII Character Set

Binary Dec. Oct. Hex. Char. Binary Dec. Oct. Hex. Char.
10000000 128 200 80 Ç 10111010 192 300 C0 �
10000001 129 201 81 ü 11000001 193 301 C1 �
10000010 130 202 82 é 11000010 194 302 C2 �
10000011 131 203 83 â 11000011 195 303 C3 �
10000100 132 204 84 ä 11000100 196 304 C4 �
10000101 133 205 85 à 11000101 197 305 C5 �
10000110 134 206 86 å 11000110 198 306 C6 �
10000111 135 207 87 ç 11000111 199 307 C7 �
10001000 136 210 88 ê 11001000 200 310 C8 	
10001001 137 211 89 ë 11001001 201 311 C9

10001010 138 212 8A è 11001010 202 312 CA �
10001011 139 213 8B ï 11001011 203 313 CB �
10001100 140 214 8C î 11001100 204 314 CC
10001101 141 215 8D ì 11001101 205 315 CD �
10001110 142 216 8E Ä 11001110 206 316 CE �
10001111 143 217 8F Å 11001111 207 317 CD �
10010000 144 220 90 É 11010000 208 320 CE �
10010001 145 221 91 æ 11010001 209 321 CF �
10010010 146 222 92 Æ 11010010 210 322 D0 �
10010011 147 223 93 ô 11010011 211 323 D1 �
10010100 148 224 94 ö 11010100 212 324 D2 �
10010101 149 225 95 ò 11010101 213 325 D3 �
10010110 150 226 96 û 11010110 214 326 D4 �
10010111 151 227 97 ù 11010111 215 327 D5 �
10011000 152 230 98 ÿ 11011000 216 330 D6 �
10011001 153 231 99 Ö 11011001 217 331 D7 �
10011010 154 232 9A Ü 11011010 218 332 D8 �
10011011 155 233 9B ¢ 11011011 219 333 D9 �
10011100 156 234 9C £ 11011100 220 334 DA �
10011101 157 235 9D ¥ 11011101 221 335 DB �
10011110 158 236 9E � 11011110 222 336 DE
10011111 159 237 9F ƒ 11011111 223 337 DF !
10100000 160 240 A0 á 11100000 224 340 E0 "
10100001 161 241 A1 í 11100001 225 341 E1 ß
10100010 162 242 A2 ó 11100010 226 342 E2 #
10100011 163 243 A3 ú 11100011 227 343 E3 $
10100100 164 244 A4 ñ 11100100 228 344 E4 %
10100101 165 245 A5 Ñ 11100101 229 345 E5 &
10100110 166 246 A6 ª 11100110 230 346 E6 µ
10100111 167 247 A7 º 11100111 231 347 E7 '
10101000 168 250 A8 ¿ 11101000 232 350 E8 (
10101001 169 251 A9) 11101001 233 351 E9 *
10101010 170 252 AA ¬ 11101010 234 352 EA +
10101011 171 253 AB ½ 11101011 235 353 EB ,
10101100 172 254 AC ¼ 11101100 236 354 EC -
10101101 173 255 AD ¡ 11101101 237 355 ED .
10101110 174 256 AE « 11101110 238 356 EE /
10101111 175 257 AF » 11101111 239 357 EF 0
10110000 176 260 B0 1 11110000 240 360 F0 2
10110001 177 261 B1 3 11110001 241 361 F1 ±
10110010 178 262 B2 4 11110010 242 362 F2 5
10110011 179 263 B3 6 11110011 243 363 F3 7
10110100 180 264 B4 8 11110100 244 364 F4 9
10110101 181 265 B5 : 11110101 245 365 F5 ;
10110110 182 266 B6 < 11110110 246 366 F6 ÷
10110111 183 267 B7 = 11110111 247 367 F7 >
10111000 184 270 B8 ? 11111000 248 370 F8 °
10111001 185 271 B9 @ 11111001 249 371 F9 A
10111010 186 272 BA B 11111010 250 372 FA ·
10111011 187 273 BB C 11111011 251 373 FB D
10111100 188 274 BC E 11111100 252 374 FC F
10111101 189 275 BD G 11111101 253 375 FD ²
10111110 190 276 BE � 11111110 254 376 FE H
10111111 191 277 BF � 11111111 255 377 FF

Chapter 1: Bits and Bytes 27

 Kirs and Pflughoeft Abstract Data Structures for Business In C/C++

Addendum 1.3: ASCII v. EBCDIC: Differences in BOLD; Unique items also Underlined

Dec. ASCII Description EBCDIC Description Dec. ASCII Description EBCDIC Description
 0 NUL Null, Tape Feed NUL Null 64 @ At Sign SP Blank Space
 1 SOH Start of Heading SOH Start of Heading 65 A Upper Case A
 2 STX Start of Text STX Start of Text 66 B Upper Case B
 3 ETX End of Text ETX End of Text 67 C Upper Case C
 4 EOT End of Trans. PF Punch Off 68 D Upper Case D
 5 ENQ Enquiry HT Horizontal Tab 69 E Upper Case E
 6 ACK Acknowledge LC Lower Case 70 F Upper Case F
 7 BEL Ring Bell DEL Delete 71 G Upper Case G
 8 BS Backspace 72 H Upper Case H
 9 HT Horizontal Tab 73 I Upper Case I
10 LF Line Feed 74 J Upper Case J ¢ Cents Sign
11 VT Vertical Tab SMM Start Man. Mess 75 K Upper Case K . Period/Decimal
12 FF Form Feed FF Form Feed 76 L Upper Case L
13 CR Carriage Return CR Carriage Return 77 M Upper Case M < Less Than Sign
14 SO Shift Out SO Shift Out 78 N Upper Case N (Left Parenthesis
15 SI Shift In SI Shift In 79 O Upper Case O + Plus Sign
16 DLE Data Link Escape DLE Data Link Escape 80 P Upper Case P & Ampersand
17 DC1 Device Control 1 DC1 Device Control 1 81 Q Upper Case Q
18 DC2 Device Control 2 DC2 Device Control 2 82 R Upper Case R
19 DC3 Device Control 3 TM Tape Mark 83 S Upper Case S
20 DC4 Device Control 4 RES Restore 84 T Upper Case T
21 NAK Negative Acknowl. NL New Line 85 U Upper Case U
22 SYN Synchronous Idle BS BackSpace 86 V Upper Case V
23 ETB End Trans Block IL Idle 87 W Upper Case W
24 CAN Cancel CAN Cancel 88 X Upper Case X
25 EM End of Medium EM End of Medium 89 Y Upper Case Y
26 SUB Substitute CC Cursor Control 90 Z Upper Case Z ! Exclamation
27 ESC Escape CU1 Customer Use 1 91 [Left Bracket $ Dollar Sign
28 FS File Separator IFS Interchg. File Sep. 92 \ Back Slash * Asterisk/Star
29 GS Group Separator IGS Interchg. Group Sep. 93] Right Bracket) Right Parentheses
30 RS Record Separator IRS Interchg. Rec. Sep. 94 ^ Carat ; Semicolon
31 US Unit Separator IUS Interchg. Unit Sep. 95 _ Underscore � Logical NOT
32 SP Blank Space DS Digit Select 96 ̀ Grave Accent - Hyphen/Minus Sign
33 ! Exclamation SOS Start of Significance 97 a Lower Case a
34 " Quotation Mark FS Field Separator 98 b Lower Case b
35 # Pound/No. Sign 99 c Lower Case c
36 $ Dollar Sign BYP By-Pass 100 d Lower Case d
37 % Percent Sign LF Line Feed 101 e Lower Case e
38 & Ampersand ETB End Trans. Block 102 f Lower Case f
39 ‘ Single Quote ESC Escape 103 g Lower Case g
40 (Left Parentheses 104 h Lower Case h
41) Right Parentheses 105 i Lower Case i
42 * Star/Multi. Sign SM Set Mode 106 j Lower Case j
43 + Plus Sign CU2 Customer Use 2 107 k Lower Case k , Comma
44 , Comma 108 l Lower Case l % Percent
45 - Minus/hyphen ENQ Enquiry 109 m Lower Case m _ Underline/Underscore
46 . Period ACK Acknowledge 110 n Lower Case n > Greater Than Sign
47 / Slash BEL Ring Bell 111 o Lower Case o ? Question Mark
48 0 Zero 112 p Lower Case p
49 1 One 113 q Lower Case q
50 2 Two SYN Synchronous Idle 114 r Lower Case r
51 3 Three 115 s Lower Case s
52 4 Four PN Punch On 116 t Lower Case t
53 5 Five RS Read Stop 117 u Lower Case u
54 6 Six UC Upper Case 118 v Lower Case v
55 7 Seven EOT End of Transmission 119 w Lower Case w
56 8 Eight 120 x Lower Case x
57 9 Nine 121 y Lower Case y
58 : Colon 122 z Lower Case z : Colon
59 ; Semi-colon CU3 Customer Use 3 123 { Left Elipses # Pound/No. Sign
60 < Less Than Sign DC4 Device Control 4 124 | Vertical Line @ At Sign
61 = Equality Symbol NAK Negative Acknowl. 125 } Right Elipses ‘ Apostrophe
62 > Greater Than Sign 126 ~ Tilde = Equal Sign
63 ? Question Mark SUB Substitute 127 DEL Delete “ Quotation Mark

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

28 Chapter 1: Bits and Bytes

Addendum 1.3:ASCII v. EBCDIC (Cont.): Differences in BOLD; Unique items also
Underlined

Dec. ASCII EBCDIC Description Dec. ASCII EBCDIC Description
128 Ç 192 �
129 ü a Lower Case a 193 � A Upper Case A
130 é b Lower Case b 194 � B Upper Case A
131 â c Lower Case c 195 � C Upper Case A
132 ä d Lower Case d 196 � D Upper Case A
133 à e Lower Case e 197 � E Upper Case A
134 å f Lower Case f 198 � F Upper Case A
135 ç g Lower Case g 199 � G Upper Case A
136 ê h Lower Case h 200 	 H Upper Case A
137 ë i Lower Case i 201
 I Upper Case A
138 è 202 �
139 ï 203 �
140 î 204
141 ì 205 �
142 Ä 206 �
143 Å 207 �
144 É 208 �
145 æ j Lower Case j 209 � J Upper Case A
146 Æ k Lower Case k 210 � K Upper Case A
147 ô l Lower Case l 211 � L Upper Case A
148 ö m Lower Case m 212 � M Upper Case A
149 ò n Lower Case n 213 � N Upper Case A
150 û o Lower Case o 214 � O Upper Case A
151 ù p Lower Case p 215 � P Upper Case A
152 ÿ q Lower Case q 216 � Q Upper Case A
153 Ö r Lower Case r 217 � R Upper Case A
154 Ü 218 �
155 ¢ 219 �
156 £ 220 �
157 ¥ 221 �
158 � 222
159 ƒ 223 !
160 á 224 "
161 í 225 ß
162 ó s Lower Case s 226 # S Upper Case A
163 ú t Lower Case t 227 $ T Upper Case A
164 ñ u Lower Case u 228 % U Upper Case A
165 Ñ v Lower Case v 229 & V Upper Case A
166 ª w Lower Case w 230 µ W Upper Case A
167 º x Lower Case x 231 ' X Upper Case A
168 ¿ y Lower Case y 232 (Y Upper Case A
169) z Lower Case z 233 * Z Upper Case A
170 ¬ 234 +
171 ½ 235 ,
172 ¼ 236 -
173 ¡ 237 .
174 « 238 /
175 » 239 0
176 1 240 2 0 Zero
177 3 241 ± 1 One
178 4 242 5 2 Two
179 6 243 7 3 Three
180 8 244 9 4 Four
181 : 245 ; 5 Five
182 < 246 ÷ 6 Six
183 = 247 > 7 Seven
184 ? 248 ° 8 Eight
185 @ ` Grave/Accent 249 A 9 Nine
186 B 250 ·
187 C 251 D
188 E 252 F
189 G 253 ²
190 � 254 H
191 � 255 FF

